
Voice Streaming over a Sensor Network
Navraj Chohan, Wei Zhang

{nchohan, wei}@cs.ucsb.edu

Abstract 

Sensor networks have become a major area of research for 

low power wireless embedded development. This paper takes 

the approach of proposing and implementing a system which 

goes against traditional low-duty sensor network applications. 

We propose and implement a prototype for the end-to-end 

streaming of voice communication over a multi-hop sensor 

network.

Keywords

Sensor Networks, Multi-hop Routing, Voice Streaming

1 Introduction 

Current communication methods used in the military employ 

a top-down implementation based on satellite communication. 

The communication system’s limitations are based on the 

nature of satellites. These limitations include: the need for 

line-of-sight with the end device, satellite latency, and lack of 

adaptation. In this paper we will propose and implement a 

bottom-up approach through the use of sensor nets. This 

approach, in contrast, is cost effective and can be employed 

on an ad-hoc basis. 

The focus of this paper will lay on the trade offs between 

packet reception and quality of service (QoS) of a voice 

channel on a sensor network, as well as the limitations and 

workarounds of current sensor net hardware. The architecture 

will be built using two different types of protocols: a stream 

transmission protocol and multi-hop routing protocol. This 

paper is organized as follows: Section 2 will discuss the 

hardware platforms and the limitations associated with using 

such hardware. Section 3 will describe and detail the 

multi-hop sensor net application. Section 4 will describe the 

end-to-end application. Section 5 will give our results from 

testing our system. Section 6 will discuss related and future 

work, and we will conclude in Section 7.

2 Hardware Platforms 

The sensor network is comprised of MICAz motes produced 

by Crossbow. These motes have the following attributes: 

 2.4 GHz, ZigBee compliant 802.15.4 radios

 250kbps data rate radio 

 Atmel Atmega128 microprocessor 

 512kB flash memory 

The sensor network communicates via programming 

boards to the end-points. The programming boards are 

MIB510 which are attached to a mote via UART. Our 

endpoints are laptops which have both larger battery supplies 

and greater processing power. All computation heavy 

processes take place at the end-points. 

3 Multi-hop Application 

We developed our mote firmware based on TinyOS, 

which is the leading operating system in wireless embedded 

systems. It provides an event driven programming 

environment and a number of libraries written in NesC to 

support agile wireless sensor network development. 

Our multi-hop protocol is based on the TinyOS standard 

routing libraries [8]. It is composed by the following modules:

MultiHopEngingM: This module assembles all other low 

level communication components. It accepts messages from 

both end-point applications and the network while doing

necessary reception and forwarding.

MultiHopLEPSM: This module is the implementation of 

multi-hop algorithms. It maintains the multi-hop network 

information and provides link estimation and path selection 

(upstream and downstream) to MultiHopEngingM.

QueueSend: This is the standard TinyOS library for packets 

buffering and sending.

GeneticComm: This combined component provides a unique 

interface for framed packet transmission over the serial port 

and the radio.

3.1 Link estimation

The goal of link estimation is to design a component, the link 

reliability estimator, which is responsive, stable, reasonably 

accurate, simple with little computational requirement, and 

memory efficient. The estimation values are calculated based 

on the packets received/loosed status in a past time window T. 

Individual nodes use these estimations to build multi-hop 

routing structures.

3.2 UpStream

The task of upstreaming is simple: select a parent and forward. 

After the link estimation, we need to maintain a set of good 

neighbors in memory to select the parent node. Neighborhood 

management has three operations: insertion, eviction, and 

reinforcement. For each incoming packet which a neighbor 

analysis is performed, the source is considered for insertion or 



reinforcement. If the source is represented in the table, a 

reinforcement operation may be performed to keep it there. If 

the source is not present and the table is full, the node must 

decide whether to discard the information associated with the 

source or evict another node from the table.

Shortest Path (SP and SP(t)) algorithms are the conventional 

distance-vector approach where each node picks a minimum 

hop-count neighbor and sets its hop count to one greater than 

its parent. For SP a node is a neighbor if a packet is received 

from it. For SP(t) a node is a neighbor if its link quality 

exceeds threshold t. Thus, a neighbor is selected as the parent 

from those who have the least hop count towards the base and 

can provide the best link quality.

3.3 DownStream 

The legacy multi-hop routing protocol provides only one way 

upstreaming communication (from remote node to base). This 

one way communication does not satisfy our requirements 

because the two endpoint applications must be able to respond

each other. In order to provide two-way voice streaming, we 

have added downstream routing to the multi-hop protocol.

 Each node maintains a downstream routing table, which 

records the reverse path for upstream transmission.

 This table is updated when upstream messages pass 

through. A simple hash table is used to accommodate the

high data rate of voice streaming; facilitating fast 

lookups and updates.

 In order to keep this table up to date, each node generates

an upstream packet sent out every 5 seconds.

3.4 Application

The application at the mote level handles voice stream packets 

coming from the serial port. Packets are transmitted into the 

network using the interfaces provide by multi-hop routing 

library. Components on the multi-hop application level are: 

 VoiceTest: This is the main entrance of our TinyOS

software

 UARTFramedPacket: This is a TinyOS standard 

component for serial communication

o HDLC packet framing and CRC checking are 

implemented here

o Accepts input from the serial port byte by byte

o Once a complete packet is received it will signal 

VoiceTest to make further process on the received 

packet

The base station will always treat the input from the serial 

port as a downstream packet; other nodes accept serial packets 

as an upstream message and send it back to the base.

4 End-to-End Application 

Although it has been shown that voice encoding and decoding 

has been performed on the mote level in [3], our system takes 

that burden to the endpoints which have larger battery 

supplies and higher computation power. Our system looks at a 

sensor network much like a PC looks at the Internet. It is to 

provide end-to-end connectivity. Yet a deployed sensor 

network is very application specific and thus information from 

the router level can be forwarded to the end point to make 

ad-hoc decisions. The information can serve as a facilitator 

towards power efficiency to allow us to maximize the lifetime 

of the network. The streaming protocol is a lightweight RTP

implementation [10]. This section will discuss our design 

decisions of the end point application as well as the trade-offs 

of making such decisions. 

4.1 Application Requirements

The PC side software must have the following requirements 

met: 

 Serial port communication 

 Input and output queuing of messages

 CRC checking

 Streaming data messages

 Detection of packet loss

 Robustness to packet loss

 Encoding/Decoding 

In addition to the requirements the software also has the 

following features either for debugging or reliability: 

 Flow control 

 Text messaging 

 Reliable control messaging 

 Statistics on packet loss and routing 

The serial port communication with the sensor network is 

done through a MIB510 programming board at 57600 baud. 

The board serves us for both programming the motes as well 

as communication—communication up and down stream

through the sensor network. The programming boards 

communicate via UART to connected motes. These connected 

motes serve as our gateway to the sensor network, where 

packets which come from the radio are forwarded to the 

UART, and packets from the UART are forwarded onto the 

radio. 

Getting started with serial port communication proved 



difficult because our Keyspan USA-19HS USB-to-serial 

adapter showed read and write inconsistencies in the Cygwin 

windows environment. Several accounts of fellow sensor-net 

researchers also attested to the difficulty they had face with 

this adapter, as well as an account on the TinyOS FAQ [6]. 

After switching to a serial-to-serial connection or using a 

different adapter, such as the ATEN UC-232A USB-Serial 

converter, our serial port woes disappeared. 

The protocol for the PC to mote communication is based 

on RFC 1662 [9]. There is a byte flag to mark the beginning 

of a packet, followed by a byte to specify the packet type 

(ack/no ack). An escape byte is used to differentiate which 

bytes are data and which bytes are special characters (i.e. the 

framing byte). The application must deal with framing and 

unframing the packets as well as doing CRC checking on the 

packets to ensure good data. 

The application has three queues which are shared 

between four different threads, requiring mutex locks and 

conditional variables. The queues are: 

 Outgoing queue 

 Incoming data queue 

 Incoming command queue 

The four threads which use these queues are: 

 Output to serial port thread 

 Input from serial port and stdin thread 

 Control thread 

 Data thread 

The mutex locks ensure that there are no deadlocks or race 

conditions between shared queues and the conditional 

variables are used to wake up waiting threads. A thread can be 

waiting on data from a queue, data from the serial port, or 

standard input from the user. Each queue holds unframed 

packets and thus the serial input and output queues must take 

care of framing and unframing the packets. Moreover, the 

input queue manager must be able to read several packets at a 

time and maintain synchronization with the framing. User 

commands are also dealt by the input thread and are converted 

to command messages. A flag is set in the message to 

distinguish between local commands and remote commands. 

4.2 Voice Encoder

Our selection of a decoder had the requirements that it had to 

give us flexibility in bit-rate, do narrow-band encoding for 

voice (300Hz to 3300Hz), be robust in the face of packet loss, 

and ultimately give us good voice quality. We choose the 

Speex library for this need [1]. The benefits of using this 

library is that it is open source, free to use, has a variable 

bit-rate, is written in C, can deal with packet loss, and is used 

exclusively for voice (whereas using vorbis would have been 

excessive). The Speex encoder deals with 20ms frames of 160 

bytes of raw PCM audio. The encoded form of the audio is 20 

bytes per 20 ms frames (8kbps), which gave us the option to 

reasonably do two frames per packet while still being able to 

stay under our bottleneck of 57600 baud. Our packet structure 

for a voice packet had:

 5 bytes of the TinyOS header

 7 bytes for the multi-hop protocol

 1 byte for message type

 1 byte for sequence number

 20 bytes for the encoded audio data

 2 bytes for the CRC

It can be seen that there is much overhead per packet at a 8:10 

ratio of overhead to audio data. Section 5 will discuss our 

options on how to lower this overhead ratio through the use of 

additional frames per packet. 

The decoder functions can deal with packet loss by 

"guessing" what the intended voice was. In order to determine 

that there was packet loss we used one byte of our audio 

message as a sequence number. This one byte gave us the 

ability to have up to 256 packets before looping back to 

sequence number 0. If a packet comes in and is not the 

immediate next packet from the previously decoded packet, 

null packets are sent to the decoder for "guessing." Depending 

on the current sequence number count, there is a range of 

sequence number values that are considered to be out-of-order 

packets. Currently these packets are dropped and decoded 

packets are freed after being played, but in the future we 

intend to store the sound to playback without jitter and delay. 

4.3 Program State

For end-to-end state synchronization, where the receiver 

knows it is the receiver and the sender knows it is the sender, 

reliable messaging must be built into the system. The 

multi-hop protocol does support bi-directional communication 

and thus makes acknowledgements and reliable messaging 

possible. Timers are needed to know when to retransmit a 

reliable command message. Messages of type FLOW (the 

types of messages are listed below) allows communication 

between the end points to relay the packet reception rate, 

which we consider the prime indicator of the QoS. The 



different types of messages include: 

 FLOW and FLOW_ACK 

 AUDIO_DATA 

 TEXT_DATA 

 SETUP_ROUTE and SETUP_ROUTE_ACK 

 RECEIVER_READY and RECEIVER_READY_ACK 

 TEAR_DOWN and TEAR_DOWN_ACK 

 ROUTE_MSG (used for statistics on multi-hop network)

 USER_QUIT 

With these message types a voice channel can be built 

and tore down. 

Each endpoint deals with three different states: 

SENDER, RECEIVER, and IDLE. Encoding happens in 

SENDER, decoding in RECEIVER, and neither in IDLE 

mode. For debugging purposes, we allow for text message to 

be sent in any of these modes. When both end points are 

in IDLE the voice channel is up for grabs from either end 

point ("push-to-talk"). A typical setup from the sender side 

would include the following steps: 

1. Send a SETUP_ROUTE message to determine if the 

network is ready

2. Wait for SETUP_ROUTE_ACK and resend 

SETUP_ROUTE if there is a timeout 

3. Send a RECEIVER_READY message to tell the 

endpoint to switch to receiver mode

4. Wait for the RECEIVER_READY_ACK and resend 

RECEIVER_READY on timeout

5. Start streaming AUDIO_DATA packets

6. Send TEAR_DOWN message and go into idle mode

7. Wait for TEAR_DOWN_ACK and resend if there is a 

timeout 

The receiver side must also be ready to resend 

acknowledgements in case they were dropped during 

transmission. 

5 Experimental Observations and Analysis 

As [4] and [5] has shown, the radio model is complex 

and proves unpredictable in a deployed system. Our 

deployment was in an indoor facility which exacerbated the 

predictability. Our definition of a good packet is one which 

passes the CRC check. We experienced no dropped packets. 

Our observations of the unstable reception rate in different 

circumstances affirmed these other accounts of 

unpredictability. Even in the same setting the reception rate 

would fluctuate at different time intervals. Furthermore 

asymmetric links in reception rate were not uncommon. With 

upstreaming receiving 90 percent good packets, we would 

experience 20 percent downstream. There were also 

counter-intuitive instances where a multi-hop path was 

providing better reception than a point-to-point connection. 

This paper reports no data for hop count versus packet 

reception due to the randomness of our data. No model could 

be constructed of the packet loss. Large scale and long term 

experiments are required to find some significant regulations

and reportable deployment policies, which we pose as future 

work. 

5.1 Audio Quality

What we do present is a comparison of audio 

quality at different levels of packet loss. In order to achieve 

this accomplishment we did not use our system to attain the

data due to the difficulty of achieving different levels of 

packet loss, rather we programmed a sound simulator which 

was based on packet reception. One caveat of our sound 

simulator is that it does not simulate jitter or delay in packet 

reception so it is an upper bound on audio quality. While it is 

difficult to use metrics on sound quality due to its 

subjectiveness, we will provide the reader with audio samples 

with different levels of packet loss for analysis. These audio 

samples can be found at: 

www.cs.ucsb.edu/~nchohan/vosn/ 

In the future we will aim for MOS ratings of the audio quality.

Our own subjective analysis of the simulated sound 

shows that at about 50 percent packet loss or above is 

unacceptable. In actual results from our system we found that 

75 percent packet reception was still unacceptable. This leads 

to the conclusion that first: we experience much jitter and 

delay in our real system which requires implementing a 

buffering scheme at the cost of overall delay, and second: 

packets which are dropped in burst significantly hurt sound 

quality. 

To look further into the speech encoder and decoder, we 

see that each frame received is encoded and decoded relative 

to the previous and next frames. A frame is not independently 

encoded like one might find with the iLBC [2] encoder (yet 

iLBC has a higher bit-rate as a trade off). Thus an equal 

distribution of packet loss is much more acceptable than burst 

loss. In order to verify this conclusion, our simulator also 

encoded and decoded frames in multiples (two or more frames 

per packet). Our subjective results show that the sound did 



deteriorate even if the packet-loss was the same for multiple 

frames per packet. The explanation of this is due to the nature 

of the speex encoder. If a frame N is "guessed" and it is wrong, 

then N+1 will be "guessed" based on the previous 

miscalculation. The sound diverges from the actual spoken 

word. Audio samples of this kind can also be found on the 

previously mentioned site. 

5.2 Power Awareness

The issue of power of this system has not been addressed yet. 

What we propose is an adaptive system which can switch on 

the fly based on feedback of packet reception. We aim to have 

two parameters: QoS_low and QoS_high. QoS_low is the 

packet reception that is unacceptable in sound quality, while 

QoS_high is sound quality that is crystal clear. Our solution to 

passing the QoS_low threshold is to send duplicate packets of 

the same frame. We double the send rate at the expense of 

power but our priorities are for a usable system and 

then power awareness. If the QoS_high threshold is passed, 

then we want to try to conserve power. This can come in the 

form of eliminating duplicate packets, or doing multiple 

frames per packet which would lower the ratio of overhead to 

audio data. Currently we are limited by TinyOS architecture 

of fixed packet sizes and are unable to change it on the fly, but 

our system allows for it at compile and mote programming 

time. If we did have the ability to do multiple frames per 

packet, there lies the trade off of lowered packet reception due 

to larger packet sizes, and the cost of burst frame drops. 

5.3 Multi-hop Algorithm Limitations

Although we cannot draw any intuitive graphs to claim that 

we have exciting discoveries, we have observed some 

interesting network behaviors. First, when doing multi-hop 

test, were we removed the antennas of two nodes and place 

some antennaed nodes between them, our hope was to create 

multi-hop networks but sometimes these two nodes still 

choose to communicate directly with each other in the face of 

a bad reception rate. In fact this describes an important trade 

off between power efficient and link quality. For power 

efficiency issues, we are seeking parents from neighbors who 

have the least hop-counts while providing the best link quality.

This is to reduce the number of hops to minimum and thus 

optimize the overall packets transmission and power 

consumption, but due to the instability of the wireless 

communication, such links are especially unreliable when 

doing high speed transmission. What if we increase the 

threshold of shortest algorithm? The number of hops will 

increase and kill the batteries rapidly. Therefore, the problem 

comes out: for high speed transmission, we require higher link 

quality than for slow sensor applications, but at the cost of 

high power usage.

6 Related and Future Work 

Ardizzone el al. has shown a sensor network with video 

capabilities in surveillance and monitoring with startgates and 

MICAz mote while Smeaton and McHugh were able to do 

audio based surveillance using a sensor network. Mangharam 

et al. were able to do voice transmission in a sensor network 

by building into the motes the ability to encode and transmit 

voice data. Additionally, he did time synchronization with 

both a hardware solution and a software solution. Our 

implementation has extracted all the computationally heavy 

operations as well as synchronization to the endpoints. This 

allows for a simpler solution and longer battery life of the 

network. 

Future work will include improving the voice quality of 

the transmission as well as attaining data of a multi-hop 

deployment. On multi-hop level, we need to find an adaptive 

protocol for such application, which select better links but 

reduce the redundant transmission by snooping. On the 

application level, voice quality can be improved with 

redundancy in the streaming. Yet in order to save power we 

may not have to send redundant packets for each set of voice 

frames. Determining out the rate of replication depending on 

the current packet loss rate needs many more experiments in 

both the field and simulation. Additionally, our system has a 

very clear distinction between the end-point and the sensor 

network. Mote applications are application specific and so 

blurring the line between the end-point application and the 

mote application can provide the better power awareness at 

the cost of the simplicity of abstraction. Lastly, our 

application must scale, while we transmitted voice over 

several hops, we wish to see our application on hundreds of 

nodes with multi-casting. Currently our routing layer does 

support many receivers and many senders, but it is untested 

and will prove to have new challenges.

7 Conclusion

We have proposed and implemented a system for data 

streaming capable of delivering voice from end-point to 

end-point over a sensor network. Our implementation has two 



distinct layers between the PC application and the mote 

application. While new challenges and limitations of our 

system are evident, problems from the current communication 

system in military systems are overcome. These problems 

include line-of-sight with satellites, large satellite latency, and 

a lack of adaptability. Furthermore, the cost of deploying a 

satellite is tremendous, while the cost of deploying a sensor 

network drops with the price of silicon and demand. With 

additional work and refinement of the software and with 

customizable endpoint hardware, a working, robust, and 

ultimately deployable sensor network is not far from the 

making. 

8 References

[1] www.speex.org

[2] www.ilbcfreeware.org/

[3] R. Mangharam, A. Rowe, R. Rajkumar, and R. Suzuki. Voice 

over Sensor Networks. RTTSS 2006.

[4] A. Smeaton and M. McHugh. Toward Event Detection in an 

Audio-Based Sensor Network. Proceedings of the third ACM 

international workshop on Video surveillance & sensor networks, 

2005. 

[5] E. Ardizzone, M. L. Cascia, G. Lo Re, and M. Ortolani. An 

Integrated Architecture for Surveillance and Monitoring in an 

Archaeological Site. Proceedings of the third ACM international 

workshop on Video surveillance & sensor networks VSSN, 

2005.

[6] www.tinyos.net

[7] A. Woo and D. Culler. A transmission control scheme for 

media access in sensor networks. In International Conference 

on Mobile Computing and Networking (MobiCom 2001), page 

221, Rome, Italy, July 2001.

[8] A. Woo and D. Culler. Taming the Underlying Challenges of 

Reliable Multihop Routing in Sensor Networks. In Proc. of the 

1st ACM Conf. on Embedded Networked Sensor Systems, 

pages 14--27. Los Angeles, Nov 5-7 2003.

[9] W. Simpson, PPP in HDLC-like framing, RFC 1662, Internet 

Engineering Task Force (1994)

[10] H. Schulzrinne, S. Casner. R. Frederick, and V. Jacobson. 

RTP: A Transport Protocol for Real-Time Applications. Network 

Working Group, January 1996. RFC 1889. 

http://www.ietf.org/rfc/rfc1889.txt


